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Automated Electric Vehicles

Automated

Connected

Electric

Convergence of the Electric Propulsion Systems and Automated \Vehicles:

Electric vehicles have inherent advantages when it comes to fuel savings and
reducing the impact on the environment.

It is easier for computers to drive electric vehicles.

The lower operating cost of a battery-electric vehicle is a much bigger factor.

Hybrid vs Electric

General Motors affirmed its commitment to battery-electric propulsion with the goal
of “Zero emissions; Zero crashes; Zero congestion”.

Tesla is pursuing the all-electric program for its “fully self-driving cars”.
Waymo is using Chrysler Pacifica minivans that are plug-in hybrid electric.

Uber is also opting for hybrids, having recently placed an order for plug-in hybrid
\Volvo XC90 SUVs.

Source: https://www.theverge.com/2017/12/12/16748024/self-driving-electric-hybrid-ev-av-gm-ford
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Energy Management of Automated Electric Vehicles
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New Opportunities for Automated Electric Vehicles
Connected Automated EVs

_ : : . . . : Connected Charging Station
2 ity Automatic Charging Decision Making Network

An automatic decision making process is
necessary for recharging of automated
electric vehicles

Remove the challenge of co-locating «
charging infrastructure with driver
destinations

Automatic Charging Station

o Utilize real-time charging station status . ® e

information S

4

Benefits
» Ensure sufficient battery energy to meet travel needs

S . Source:
ht(ig:r/(/:\'/svww.ipwatchdog.com/2015/06/18/wirele https://patents.google.com/pate ... . . .
ss-induction-charging-is-coming-to-electic- ntUS9527403 * Minimize the energy/time/money cost of charging actions

vehicles/id=58756/

» Facilitate the charging control and vehicle/grid integration
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Automatic Charging Decision Making Framework

Nearby Charging Station Network
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Data-Driven EV Energy Consumption Modeling

* Energy cost per mile (KWh/mile) distribution
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A stochastic model for Nissan Leaf

Average Energy Cost per Mile from Real Data
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Data-Driven EV Energy Consumption Modeling

» Multi Channels Prediction Model Construction and Real-time Update

New Completed Trip
* Distance d|k]

* Energy Cost E,[k] E

Average Speed i

VK] = |

Energy Cost per Mile
Eepm [k]

* Travel Time t[k] [Vo, V1]

l [Vis, Vi]

Multi-Channel Updating

my (k] =
6t[k] =

m;[k] =
8¢ (k] =

mylk] =
8xlk] =

Jm(mylk — 1], Eepmlk])
f5(8¢[k — 1], Ecpml[k])

fm(mi [k — 1]» Eepm[kD
f6(6iz[k - 1]:Eepm[k])

(il — 1], Eepm[k])
fé‘(‘sl%[k - 1]rEepm[kD

Average speeds in
future routes

(my [k], my[k], ..., my[k])
(6%[k], 63[k], .., 8% [K])

‘Prediction Function Fitting

Mean Prediction Function Fp,, (V)
Variance Prediction Function F,,, (V)

Robust Decision -

Promising energy consumption modeling

Making

Reconstructed lower and

upper bound of uncertainties

Deterministic
Decision Making

L 4

- Predicted variance of energy

. cost per mile 57

_ Predicted mean of energy

-: cost per mile m,

Idaho National Laboratory

v" Data-driven modeling can provides a uniform format, which is independent from specific vehicle parameters, and is easy to

handle real-world uncertainties.

v" Stochastic modeling for real-world uncertainties provides the capability of decision making process to achieve robust

strategies.

v" Real-time updating is necessary to handle the dynamics of real world traffic and other environmental conditions.
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Dynamic Programming for Charging Decision Making
« Multi-Stage Charging Decision Making Modeling

Deterministic (Average) Modeling
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Energy Cost Prediction
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Results for Personal Automated EVs Scenario

Itinerary Information
T Level 2 Charging Stations

A daily trip in Chicago
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Results for Personal Automated EVs Scenario

Average Decision Making for Robust Decision Making for
Charging Strategies Charging Strategies
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Results for Personal Automated EVs Scenario

Visited Locations

-88.0

—86.5

Public Charging Station Locations
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Data: Travel Tracker Survey from the Chicago Metropolitan Agency for Planning (CMAP)

Source: http://www.cmap.illinois.gov/data/transportation/travel-survey

8kWh

Initial Energly_: .
rips wi

Successful

Trips without Charging . ..
18826 daily itineraries in total

Failed: Itineraries cannot be achieved with enough energy using charging decision making algorithm.
Successful: Itineraries are achieved successfully by using charging decision making algorithm.

Reference: Zonggen Yi, and Matthew Shirk. "Data-driven optimal charging decision making for connected and automated electric
vehicles: A personal usage scenario.” Transportation Research Part C: Emerging Technologies 86 (2018): 37-58.
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Preliminary Conclusions

+ A properly designed intelligent algorithm can achieve the recharging decision making automatically for
future automated electric vehicles.

+ Automatic charging decision making works well to reduce the range anxiety even with current existing
charging station network and can mitigate the pain from electric vehicle charging necessity outside home.

» More available future trip information during a long itinerary with several trip segments can help to
achieve much better decision making overall.

+ Optimized charging strategies can minimize the monetary and energy cost of charging actions for
autonomous vehicles so as to improve the sustainability of future automated electrified transportation.
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Future Work — Vehicle Level

* Energy Consumption Dynamics
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Energy cost per mile of Nissan Leaf Taxi with regard to average
vehicle speed and ambient temperature in New York City

« Charging Power Dynamics
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Realistic charging power data for a 2015 Nissan Leaf
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Future Work — Vehicle Level

« Impact of High Power Charging to Battery Life

A rendering of a 350kW XFC charging station by Electrek.

Source: https://www.energy.gov/eere/vehicles/downloads/enabling-extreme-fast-
charging-technology-gap-assessment

Change in Energy Capacity
(% from Baseline)
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Source: https://www.energy.gov/sites/prod/files/2015/01/f19/dcfc_study fs_50k.pdf
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Future Work — System Level

Spatiotemporal [/
travel demand '@ g . Eco-Routing/Eco-
) » o D\ Systematic Management Driving
for Personal/Shared Co-Optimization

Automated EV Fleet

Recharging Decision
Making

Centralized vs Decentralized
« Communication cost

Charging Infrastructure
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Preliminary research:
Zonggen Yi, John Smart, and Matthew Shirk. "Energy impact evaluation for eco-routing and charging of autonomous electric vehicle fleet: Ambient
temperature consideration.” Transportation Research Part C: Emerging Technologies 89 (2018): 344-363.



